Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Angew Chem Int Ed Engl ; : e202405676, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606914

RESUMO

Metal-organic framework (MOF) membranes with rich functionality and tunable pore system are promising for precise molecular separation; however, it remains a challenge to develop defect-free high-connectivity MOF membrane with high water stability owing to uncontrollable nucleation and growth rate during fabrication process. Herein, we report on a confined-coordination induced intergrowth strategy to fabricate lattice-defect-free Zr-MOF membrane towards precise molecular separation. The confined-coordination space properties (size and shape) and environment (water or DMF) were regulated to slow down the coordination reaction rate via controlling the counter-diffusion of MOF precursors (metal cluster and ligand), thereby inter-growing MOF crystals into integrated membrane. The resulting Zr-MOF membrane with angstrom-sized lattice apertures exhibits excellent separation performance both for gas separation and water desalination process. It was achieved H2 permeance of ~1200 GPU and H2/CO2 selectivity of ~67; water permeance of ~8 L ⋅ m-2 ⋅ h-1 ⋅ bar-1 and MgCl2 rejection of ~95 %, which are one to two orders of magnitude higher than those of state-of-the-art membranes. The molecular transport mechanism related to size-sieving effect and transition energy barrier differential of molecules and ions was revealed by density functional theory calculations. Our work provides a facile approach and fundamental insights towards developing precise molecular sieving membranes.

2.
Brain Behav Immun ; 119: 648-664, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677623

RESUMO

The high prevalence of major depressive disorder (MDD) frequently imposes severe constraints on psychosocial functioning and detrimentally impacts overall well-being. Despite the growing interest in the hypothesis of mitochondrial dysfunction, the precise mechanistic underpinnings and therapeutic strategies remain unclear and require further investigation. In this study, an MDD model was established in mice using lipopolysaccharide (LPS). Our research findings demonstrated that LPS exposure induced depressive-like behaviors and disrupted mitophagy by diminishing the mitochondrial levels of PINK1/Parkin in the brains of mice. Furthermore, LPS exposure evoked the activation of the NLRP3 inflammasome, accompanied by a notable elevation in the concentrations of pro-inflammatory factors (TNF-α, IL-1ß, and IL-6). Additionally, neuronal apoptosis was stimulated through the JNK/p38 pathway. The administration of BGP-15 effectively nullified the impact of LPS, corresponding to the amelioration of depressive-like phenotypes and restoration of mitophagy, prevention of neuronal injury and inflammation, and suppression of reactive oxygen species (ROS)-mediated NLRP3 inflammasome activation. Furthermore, we elucidated the involvement of mitophagy in BGP-15-attenuated depressive-like behaviors using the inhibitors targeting autophagy (3-MA) and mitophagy (Mdivi-1). Notably, these inhibitors notably counteracted the antidepressant and anti-inflammatory effects exerted by BGP-15. Based on the research findings, it can be inferred that the antidepressant properties of BGP-15 in LPS-induced depressive-like behaviors could potentially be attributed to the involvement of the mitophagy pathway. These findings offer a potential novel therapeutic strategy for managing MDD.

3.
Mil Med Res ; 11(1): 16, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462603

RESUMO

BACKGROUND: Episodic memory loss is a prominent clinical manifestation of Alzheimer's disease (AD), which is closely related to tau pathology and hippocampal impairment. Due to the heterogeneity of brain neurons, the specific roles of different brain neurons in terms of their sensitivity to tau accumulation and their contribution to AD-like social memory loss remain unclear. Therefore, further investigation is necessary. METHODS: We investigated the effects of AD-like tau pathology by Tandem mass tag proteomic and phosphoproteomic analysis, social behavioural tests, hippocampal electrophysiology, immunofluorescence staining and in vivo optical fibre recording of GCaMP6f and iGABASnFR. Additionally, we utilized optogenetics and administered ursolic acid (UA) via oral gavage to examine the effects of these agents on social memory in mice. RESULTS: The results of proteomic and phosphoproteomic analyses revealed the characteristics of ventral hippocampal CA1 (vCA1) under both physiological conditions and AD-like tau pathology. As tau progressively accumulated, vCA1, especially its excitatory and parvalbumin (PV) neurons, were fully filled with mislocated and phosphorylated tau (p-Tau). This finding was not observed for dorsal hippocampal CA1 (dCA1). The overexpression of human tau (hTau) in excitatory and PV neurons mimicked AD-like tau accumulation, significantly inhibited neuronal excitability and suppressed distinct discrimination-associated firings of these neurons within vCA1. Photoactivating excitatory and PV neurons in vCA1 at specific rhythms and time windows efficiently ameliorated tau-impaired social memory. Notably, 1 month of UA administration efficiently decreased tau accumulation via autophagy in a transcription factor EB (TFEB)-dependent manner and restored the vCA1 microcircuit to ameliorate tau-impaired social memory. CONCLUSION: This study elucidated distinct protein and phosphoprotein networks between dCA1 and vCA1 and highlighted the susceptibility of the vCA1 microcircuit to AD-like tau accumulation. Notably, our novel findings regarding the efficacy of UA in reducing tau load and targeting the vCA1 microcircuit may provide a promising strategy for treating AD in the future.


Assuntos
Doença de Alzheimer , Humanos , Masculino , Camundongos , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Camundongos Transgênicos , Proteômica , Hipocampo/metabolismo , Hipocampo/patologia , Transtornos da Memória/metabolismo
4.
Neurosci Lett ; 825: 137700, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38401642

RESUMO

Multiple biological functions of MTMR14 including regulation of autophagy, inflammation and Ca2+ homeostasis have been reported. However, its functional contribution to learning and memory remains unclear. In this study, we investigated whether upregulation of MTMR14 induced cognitive impairment and the underlying mechanisms. MTMR14 level was significantly increased in cells or brain tissues that overexpressed P301S-tau. The fusion of autophagosome and lysosome was significantly inhibited by overexpression of MTMR14 or P301S-tau. Upregulation of MTMR14 led to cognitive impairments in 2-month-old mice by inhibiting synaptic protein expression. These findings suggest that MTMR14 may be a key risk factor for cognitive ability.


Assuntos
Doença de Alzheimer , Proteínas tau , Camundongos , Animais , Regulação para Cima , Aprendizagem em Labirinto/fisiologia , Camundongos Transgênicos , Proteínas tau/metabolismo , Modelos Animais de Doenças , Doença de Alzheimer/metabolismo , Monoéster Fosfórico Hidrolases/genética
5.
J Neurochem ; 168(3): 288-302, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38275215

RESUMO

An increase in tau acetylation at K274 and K281 and abnormal mitochondrial dynamics have been observed in the brains of Alzheimer's disease (AD) patients. Here, we constructed three types of tau plasmids, TauKQ (acetylated tau mutant, by mutating its K274/K281 into glutamine to mimic disease-associated lysine acetylation), TauKR (non-acetylated tau mutant, by mutating its K274/K281 into arginine), and TauWT (wild-type human full-length tau). By transfecting these tau plasmids in HEK293 cells, we found that TauWT and TauKR induced mitochondrial fusion by increasing the level of mitochondrial fusion proteins. Conversely, TauKQ induced mitochondrial fission by reducing mitochondrial fusion proteins, exacerbating mitochondrial dysfunction and apoptosis. BGP-15 ameliorated TauKQ-induced mitochondrial dysfunction and apoptosis by improving mitochondrial dynamics. Our findings suggest that acetylation of K274/281 represents an important post-translational modification site regulating mitochondrial dynamics, and that BGP-15 holds potential as a therapeutic agent for mitochondria-associated diseases such as AD.


Assuntos
Doença de Alzheimer , Doenças Mitocondriais , Oximas , Piperidinas , Humanos , Acetilação , Doença de Alzheimer/metabolismo , Apoptose , Células HEK293 , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
7.
Neural Regen Res ; 19(7): 1489-1498, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051891

RESUMO

ABSTRACT: Alzheimer's disease is the most prevalent neurodegenerative disease affecting older adults. Primary features of Alzheimer's disease include extracellular aggregation of amyloid-ß plaques and the accumulation of neurofibrillary tangles, formed by tau protein, in the cells. While there are amyloid-ß-targeting therapies for the treatment of Alzheimer's disease, these therapies are costly and exhibit potential negative side effects. Mounting evidence suggests significant involvement of tau protein in Alzheimer's disease-related neurodegeneration. As an important microtubule-associated protein, tau plays an important role in maintaining the stability of neuronal microtubules and promoting axonal growth. In fact, clinical studies have shown that abnormal phosphorylation of tau protein occurs before accumulation of amyloid-ß in the brain. Various therapeutic strategies targeting tau protein have begun to emerge, and are considered possible methods to prevent and treat Alzheimer's disease. Specifically, abnormalities in post-translational modifications of the tau protein, including aberrant phosphorylation, ubiquitination, small ubiquitin-like modifier (SUMO)ylation, acetylation, and truncation, contribute to its microtubule dissociation, misfolding, and subcellular missorting. This causes mitochondrial damage, synaptic impairments, gliosis, and neuroinflammation, eventually leading to neurodegeneration and cognitive deficits. This review summarizes the recent findings on the underlying mechanisms of tau protein in the onset and progression of Alzheimer's disease and discusses tau-targeted treatment of Alzheimer's disease.

9.
Transl Neurodegener ; 12(1): 51, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950283

RESUMO

BACKGROUND: Intraneuronal accumulation of hyperphosphorylated tau is a defining hallmark of Alzheimer's disease (AD). However, mouse models imitating AD-exclusive neuronal tau pathologies are lacking. METHODS: We generated a new tet-on transgenic mouse model expressing truncated human tau N1-368 (termed hTau368), a tau fragment increased in the brains of AD patients and aged mouse brains. Doxycycline (dox) was administered in drinking water to induce hTau368 expression. Immunostaining and Western blotting were performed to measure the tau level. RNA sequencing was performed to evaluate gene expression, and several behavioral tests were conducted to evaluate mouse cognitive functions, emotion and locomotion. RESULTS: Dox treatment for 1-2 months at a young age induced overt and reversible human tau accumulation in the brains of hTau368 transgenic mice, predominantly in the hippocampus. Meanwhile, the transgenic mice exhibited AD-like high level of tau phosphorylation, glial activation, loss of mature neurons, impaired hippocampal neurogenesis, synaptic degeneration and cognitive deficits. CONCLUSIONS: This study developed a well-characterized and easy-to-use tool for the investigations and drug development for AD and other tauopathies.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Hipocampo/metabolismo , Camundongos Transgênicos , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/genética , Tauopatias/metabolismo , Tauopatias/patologia
10.
Science ; 381(6664): 1350-1356, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37733840

RESUMO

Mixed-matrix membranes (MMMs) that combine processable polymer with more permeable and selective filler have potential for molecular separation, but it remains difficult to control their interfacial compatibility and achieve ultrathin selective layers during processing, particularly at high filler loading. We present a solid-solvent processing strategy to fabricate an ultrathin MMM (thickness less than 100 nanometers) with filler loading up to 80 volume %. We used polymer as a solid solvent to dissolve metal salts to form an ultrathin precursor layer, which immobilizes the metal salt and regulates its conversion to a metal-organic framework (MOF) and provides adhesion to the MOF in the matrix. The resultant membrane exhibits fast gas-sieving properties, with hydrogen permeance and/or hydrogen-carbon dioxide selectivity one to two orders of magnitude higher than that of state-of-the-art membranes.

11.
Toxicol Lett ; 387: 14-27, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37717680

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder that mainly affects the elder population, and its etiology is enigmatic. Both environmental risks and genetics may influence the development of PD. Excess copper causes neurotoxicity and accelerates the progression of neurodegenerative diseases. However, the underlying mechanisms of copper-induced neurotoxicity remain controversial. In this study, A53T transgenic α-synuclein (A53T) mice and their matching wild-type (WT) mice were treated with a low dose of copper (0.13 ppm copper chlorinated drinking water, equivalent to the copper exposure of human daily copper intake dose) for 4 months, and copper poisoning was performed on human A53T mutant SHSY5Y cells overexpressed with α-synuclein (dose of 1/4 IC50), to test the effects of copper exposure on the body. The results of the open field test showed that the moto function of Cu-treated mice was impaired. Proteomics revealed changes in neurodevelopment, transport function, and mitochondrial membrane-related function in Cu-treated WT mice, which were associated with reduced expression of mitochondrial complex (NDUFA10, ATP5A), dopamine neurons (TH), and dopamine transporter (DAT). Mitochondrial function, nervous system development, synaptic function, and immune response were altered in Cu-treated A53T mice. These changes were associated with increased mitochondrial splitting protein (Drp1), decreased mitochondrial fusion protein (OPA1, Mfn1), abnormalities in mitochondrial autophagy protein (LC3BII/I, P62), decreased dopamine neuron (TH) expression, increased α-synuclein expression, inflammatory factors (IL-6, IL-1ß, and TNF-α) release and microglia (Iba1) activation. In addition, we found that Cu2+ (30 µM) induced excessive ROS production and reduced mitochondrial ATP production in human A53T mutant α-synuclein overexpressing SHSY5Y cells by in vitro experiments. In conclusion, low-dose copper treatment altered critical proteins involved in mitochondrial, neurodevelopmental, and inflammatory responses and affected mitochondria's ROS and ATP production levels.


Assuntos
Cobre , Doença de Parkinson , alfa-Sinucleína , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , alfa-Sinucleína/metabolismo , Cobre/toxicidade , Cobre/metabolismo , Camundongos Transgênicos , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Modelos Animais de Doenças , Linhagem Celular , Humanos
12.
MedComm (2020) ; 4(4): e315, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37533767

RESUMO

Multi-omics usually refers to the crossover application of multiple high-throughput screening technologies represented by genomics, transcriptomics, single-cell transcriptomics, proteomics and metabolomics, spatial transcriptomics, and so on, which play a great role in promoting the study of human diseases. Most of the current reviews focus on describing the development of multi-omics technologies, data integration, and application to a particular disease; however, few of them provide a comprehensive and systematic introduction of multi-omics. This review outlines the existing technical categories of multi-omics, cautions for experimental design, focuses on the integrated analysis methods of multi-omics, especially the approach of machine learning and deep learning in multi-omics data integration and the corresponding tools, and the application of multi-omics in medical researches (e.g., cancer, neurodegenerative diseases, aging, and drug target discovery) as well as the corresponding open-source analysis tools and databases, and finally, discusses the challenges and future directions of multi-omics integration and application in precision medicine. With the development of high-throughput technologies and data integration algorithms, as important directions of multi-omics for future disease research, single-cell multi-omics and spatial multi-omics also provided a detailed introduction. This review will provide important guidance for researchers, especially who are just entering into multi-omics medical research.

13.
Chem Commun (Camb) ; 59(52): 8075-8078, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37288520

RESUMO

Well-intergrown polycrystalline UiO-66 membranes were successfully synthesized on a polymeric substrate under mild synthesis conditions of a lower temperature and short synthesis time. The resulted UiO-66 membranes with fast water selective transport channels exhibited unprecedentedly high solvent dehydration performance with a permeation flux of ∼6100 g m-2 h-1 and a separation factor of ∼7500, showing great potential for intensification of esterification reaction.

14.
Chem Soc Rev ; 52(14): 4586-4602, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37377411

RESUMO

Zeolites and metal-organic frameworks (MOFs) represent an attractive class of crystalline porous materials that possesses regular pore structures. The inherent porosity of these materials has led to an increasing focus on gas separation applications, encompassing adsorption and membrane separation techniques. Here, a brief overview of the critical properties and fabrication approaches for zeolites and MOFs as adsorbents and membranes is given. The separation mechanisms, based on pore sizes and the chemical properties of nanochannels, are explored in depth, considering the distinct characteristics of adsorption and membrane separation. Recommendations for judicious selection and design of zeolites and MOFs for gas separation purposes are emphasized. By examining the similarities and differences between the roles of nanoporous materials as adsorbents and membranes, the feasibility of zeolites and MOFs from adsorption separation to membrane separation is discussed. With the rapid development of zeolites and MOFs towards adsorption and membrane separation, challenges and perspectives of this cutting-edge area are also addressed.

15.
J Pharm Pharmacol ; 75(8): 1086-1099, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37167529

RESUMO

OBJECTIVES: We aimed to elucidate the therapeutic potential of Chrysin (CN) against the high-fat diet (HFD) induced non-alcoholic fatty liver disease (NAFLD) and its mechanism. METHODS: To assess the hypothesis, NAFLD was induced in C57BL/6 mice by feeding a high-fat diet for up to two months, followed by CN administration (for three months). Liver injury/toxicity, lipid deposition, inflammation and fibrosis were detected via molecular and biochemical analysis, including blood chemistry, immunoimaging and immunoblotting. Moreover, we performed proteomic analysis to illuminate Chrysin's therapeutic effects further. KEY FINDINGS: CN treatment significantly reduced liver-fat accumulation and inflammation, ultimately improving obesity and liver injury in NAFLD mice. Proteomic analysis showed that CN modified the protein expression profiles in the liver, particularly improving the expression of proteins related to energy, metabolism and inflammation. Mechanistically, CN treatment increased AMP-activated protein and phosphorylated CoA (P-ACC). Concurrently, it reduced inflammation and inflammation activation by inhibiting NLRP3 expression. CONCLUSIONS: In summary, CN treatment reduced lipid metabolism by AMPK and inflammasome activation by NLRP3 inhibition, ultimately improving NAFLD progression. These findings suggest that CN could be a potential treatment candidate for the NFLAD condition.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteômica , Camundongos Endogâmicos C57BL , Fígado , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Metabolismo dos Lipídeos , Dieta Hiperlipídica/efeitos adversos
16.
Nat Mater ; 22(6): 769-776, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37169972

RESUMO

Metal-organic framework (MOF) membranes are energy-efficient candidates for molecular separations, but it remains a considerable challenge to eliminate defects at the atomic scale. The enlargement of pores due to defects reduces the molecular-sieving performance in separations and hampers the wider application of MOF membranes, especially for liquid separations, owing to insufficient stability. Here we report the elimination of lattice defects in MOF membranes based on a high-probability theoretical coordination strategy that creates sufficient chemical potential to overcome the steric hindrance that occurs when completely connecting ligands to metal clusters. Lattice defect elimination is observed by real-space high-resolution transmission electron microscopy and studied with a mathematical model and density functional theory calculations. This leads to a family of high-connectivity MOF membranes that possess ångström-sized lattice apertures that realize high and stable separation performance for gases, water desalination and an organic solvent azeotrope. Our strategy could enable a platform for the regulation of nanoconfined molecular transport in MOF pores.

18.
MedComm (2020) ; 4(3): e252, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37139463

RESUMO

Sleep insufficiency is associated with various disorders; the molecular basis is unknown until now. Here, 14 males and 18 females were subjected to short-term (24 h) sleep deprivation, and donated fasting blood samples prior to (day 1) and following (days 2 and 3) short-term sleep deprivation. We used multiple omics techniques to examine changes in volunteers' blood samples that were subjected to integrated, biochemical, transcriptomic, proteomic, and metabolomic analyses. Sleep deprivation caused marked molecular changes (46.4% transcript genes, 59.3% proteins, and 55.6% metabolites) that incompletely reversed by day 3. The immune system in particular neutrophil-mediated processes associated with plasma superoxidase dismutase-1 and S100A8 gene expression was markedly affected. Sleep deprivation decreased melatonin levels and increased immune cells, inflammatory factors and c-reactive protein. By disease enrichment analysis, sleep deprivation induced signaling pathways for schizophrenia and neurodegenerative diseases enriched. In sum, this is the first multiomics approach to show that sleep deprivation causes prominent immune changes in humans, and clearly identified potential immune biomarkers associated with sleep deprivation. This study indicated that the blood profile following sleep disruption, such as may occur among shift workers, may induce immune and central nervous system dysfunction.

19.
Immun Ageing ; 20(1): 15, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005686

RESUMO

BACKGROUND: A wide spectrum of changes occurs in the brain with age, from molecular to morphological aspects, and inflammation accompanied by mitochondria dysfunction is one of the significant factors associated with age. Adiponectin (APN), an essential adipokine in glucose and lipid metabolism, is involved in the aging; however, its role in brain aging has not been adequately explored. Here, we aimed to explore the relationship between APN deficiency and brain aging using multiple biochemical and pharmacological methods to probe APN in humans, KO mice, primary microglia, and BV2 cells. RESULTS: We found that declining APN levels in aged human subjects correlated with dysregulated cytokine levels, while APN KO mice exhibited accelerated aging accompanied by learning and memory deficits, anxiety-like behaviors, neuroinflammation, and immunosenescence. APN-deficient mice displayed aggravated mitochondrial dysfunction and HDAC1 upregulation. In BV2 cells, the APN receptor agonist AdipoRon alleviated the mitochondrial deficits and aging markers induced by rotenone or antimycin A. HDAC1 antagonism by Compound 60 (Cpd 60) improved mitochondrial dysfunction and age-related inflammation, as validated in D-galactose-treated APN KO mice. CONCLUSION: These findings indicate that APN is a critical regulator of brain aging by preventing neuroinflammation associated with mitochondrial impairment via HDAC1 signaling.

20.
Redox Biol ; 62: 102697, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37037158

RESUMO

Increased tau acetylation at K274 and K281 has been observed in the brains of Alzheimer's disease (AD) patients and animal models, and mitochondrial dysfunction are noticeable and early features of AD. However, the effect of acetylated tau on mitochondria has been unclear until now. Here, we constructed three type of tau forms, acetylated tau mutant by mutating its K274/K281 into Glutamine (TauKQ) to mimic disease-associated lysine acetylation, the non-acetylation tau mutant by mutating its K274/K281 into Arginine (TauKR) and the wild-type human full-length tau (TauWT). By overexpression of these tau forms in vivo and in vitro, we found that, TauKQ induced more severe cognitive deficits with neuronal loss, dendritic plasticity damage and mitochondrial dysfunctions than TauWT. Unlike TauWT induced mitochondria fusion, TauKQ not only induced mitochondria fission by decreasing mitofusion proteins, but also inhibited mitochondrial biogenesis via reduction of PGC-1a/Nrf1/Tfam levels. TauKR had no significant difference in the cognitive and mitochondrial abnormalities compared with TauWT. Treatment with BGP-15 rescued impaired learning and memory by attenuation of mitochondrial dysfunction, neuronal loss and dendritic complexity damage, which caused by TauKQ. Our data suggested that, acetylation at K274/281 was an important post translational modification site for tau neurotoxicity, and BGP-15 is a potential therapeutic drug for AD.


Assuntos
Doença de Alzheimer , Proteínas tau , Animais , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Oximas/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA